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ABSTRACT

Fuzzy c-means (FCM) clustering has been extensively studied

and widely applied in the tissue classification of biomedical

images. Previous enhancements to FCM have accounted for

intensity shading, membership smoothness, and variable clus-

ter sizes. In this paper, we introduce a new parameter called

“compactness” which captures additional information of the

underlying clusters. We then propose a new classification al-

gorithm, FCM with variable compactness (FCMVC), to clas-

sify three major tissues in brain MRIs by incorporating the

compactness terms into a previously reported improvement

to FCM. Experiments on both simulated phantoms and real

magnetic resonance brain images show that the new method

improves the repeatability of the tissue classification for the

same subject with different acquisition protocols.

Index Terms— Biomedical image processing, fuzzy sets,

image segmentation, magnetic resonance imaging.

1. INTRODUCTION

The fuzzy c-means (FCM) algorithm [1] has been extensively

used in medical image segmentation. It has been especially

successfully at classifying major tissues from magnetic reso-

nance images of the human brain [2,3]. FCM converges read-

ily, is scale and shift invariant, and allows for the straightfor-

ward incorporation of multichannel data. Furthermore, FCM

directly yields soft segmentations (in the form of member-

ship functions) that are typically desirable intermediate data

structures (as opposed to hard classifications) for further anal-

ysis [4]. The original algorithm has also been adapted to ac-

count for image shading [5], membership smoothness [6], and

variable cluster size [7, 8].

Recently, Clark et. al. [9] observed that there exists in-

consistency in tissue segmentations arising from the choice

of pulse sequence in data acquisition. We have had similar

observations in our experiments. The inconsistency is caused

by the fact that the relative size of clusters can be considerably
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different among multi-parametric scans of the same subject.

This is an undesirable property as we prefer the performance

of the segmentation algorithm to be independent of the data

acquisition process. In order to achieve consistent segmen-

tations, we introduce a new parameter, called compactness,

into the FCM framework to obtain a novel variational formu-

lation that has one compactness parameter per class predeter-

mined for different acquisitions. We name the new algorithm

FCM with variable compactness (FCMVC). The same idea is

also incorporated into an enhanced variant of FCM — Fuzzy

and Noise Tolerant Adaptive Segmentation Method (FAN-

TASM) [6], which yields FANTASM with Variable Compact-

ness (FVC).

In this paper, we describe an optimization process to solve

the proposed FVC formulation. To validate the proposed

method, we compare the performance of FVC against several

existing methods, including FANTASM, FCM with a fuzzy

covariance matrix [7] (FCMV), and Gaussian Mixture Model

(GMM). Experiments show that FVC achieves improved

consistency in segmentations when magnetic resonance brain

images are acquired using two different pulse sequences

(spoiled gradient (SPGR) and magnetization prepared rapid

gradient echo (MP-RAGE)) from the same subject.

2. BACKGROUND

Mathematically, FCM is the solution of the following energy

function:

JFCM =
∑
j∈Ω

C∑
k=1

uq
jk(yj − vk)2 (1)

where yj is the observed image intensity at the jth pixel, C
is the number of classes, vk’s are class centroids, Ω is image

domain, and ujk is the membership function value of the jth

pixel for the kth class. Membership functions must be non-

negative, and satisfy the constraint
∑C

k=1 ujk = 1, ∀j ∈ Ω.

The energy function is minimized if high membership val-

ues are assigned to observations close to centroids and low

membership values to observations away from centroids. The

parameter q is a weighting exponent and is constrained by
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Fig. 1. (a) uj1 + uj2 + uj3 = 1 plane. (b) Plot of ujk(yj ; q)
on the plane. The left red line is uj3 = 0 and the right red line

is uj1 = 0.

q > 1. When q = 1, FCM reduces to the hard K-means al-

gorithm with the membership functions taking binary values.

As the value of q increases, the fuzziness of the membership

functions also increase.

Since we are interested in segmenting three major tissues

in the human brain – the cerebrospinal fluid (CSF), the gray

matter (GM), and the white matter (WM), we consider a three

class problem in the following manner. Let v1, v2, and v3

be the class centroids with v1 < v2 < v3. Let yj vary

over (−∞, +∞) and assume vk’s are fixed. Recalling that

∀j,
∑3

k=1 ujk = 1, we can represent the membership func-

tions [uj1 uj3 uj2], for a particular yj , as a point on the plane

x + y + z = 1 (Fig. 1(a)) by taking uj1 = x, uj2 = z,

uj3 = y. We plot the membership points as a continuous

function of yj on this plane and show the 2D projection of the

plane in Fig. 1(b) for the choices of q = 2 and q = 3. The

three vertices in Fig. 1(b) starting from bottom left in clock-

wise direction are v1, v2, and v3, respectively. When y � v1

or y � v3, the curve tends to [ 13 , 1
3 , 1

3 ], i.e, the center of the

plane. In our case, for yj ∈ [v1, v2], it is expected that yj is

a mixture of CSF and GM, with uj3 being small. Similarly

uj1 is expected to be small for yj ∈ [v2, v3], as it is a mixture

of GM and WM. Considering the effect of q on the member-

ships, we observe that, if q increases, WM membership uj3

for yj ∈ [v1, v2] increases, and so does the CSF membership

uj1 for yj ∈ [v2, v3]. This demonstrates that the parameter q
captures information about the variability of clusters. Based

on this interpretation, we assume that if the WM cluster has

large variance, then uj3 for yj ∈ [v1, v2] should increase.

And similarly, if CSF cluster has large variance, then uj1 for

yj ∈ [v2, v3] should increase.

Several modifications of FCM have been proposed in the

literature. A generalized Lp norm has been introduced in [10]

to include variability of classes into energy function. Another

way to take into account cluster variability is to incorporate

a covariance matrix between classes, such as proposed with

FCMV [7]. A simplified single-channel formulation is given

(a) (b)

Fig. 2. Plot of ūjk(yj ;p), for different parameters pk.

as follows:

JFCMV =
∑
j∈Ω

C∑
k=1

uq
jk

(
yj − vk

σk

)2

, (2)

where σk is the variance of the kth class. In the next section,

we will describe a new approach to model the variability of

clusters.

3. FCM WITH VARIABLE COMPACTNESS (FCMVC)

3.1. Problem Formulation

We introduce a fixed parameter pk, k = 1, . . . , C, in the FCM

framework as minimization of the following function,

JFCMVC =
∑
j∈Ω

C∑
k=1

ū2
jk(yj − vk)2pk . (3)

Minimization of JFCMVC gives the membership functions as,

ūjk =
(yj − vk)−2pk∑C
l=1(yj − vl)−2pl

.

We note that p = [p1 . . . pC ] = [1 . . . 1] is the same as

FCM with q = 2. The plot of memberships ūjk for a fixed

set of vk and pk are shown in Fig. 2. We observe that for

∀yj ∈ [v1, v2], ūj3 with p1 > p2 > p3 has increased from

uj3 with p = [1 1 1] (Fig. 2(a)). Similarly ∀yj ∈ [v2, v3],
ūj1 with p1 < p2 < p3, has increased from uj1 (Fig. 2(b)).

It shows that with decreasing pk, memberships increase for

a fixed |yj − vk|. So we infer that pk is a measure of the

compactness of cluster k. It is chosen to be large for small

classes and small for large classes.

Based on the proposed method FCMVC, we now modify

the FANTASM energy function [6] to FVC,

JFVC =
∑
j∈Ω

C∑
k=1

u2
jk(yj − gjvk)2pk +

λ1

∑
j∈Ω

2∑
r=1

(Dr � g)j
2 + λ2

∑
j∈Ω

R∑
r=1

R∑
s=1

(Dr � Ds � g)j
2
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+
β

2

∑
j∈Ω

C∑
k=1

u2
jk

∑
l∈Nj

∑
m�=k

u2
lm

Ω, ujk, pk, yj , vk have been described earlier. Here, gj is a

scalar gain field to account for image inhomogeneity, Dr and

Ds are first order finite difference operators, R = 2 denotes

vertical and horizontal directions, λ1 and λ2 are regulariza-

tions on gain field, Nj is the set of first order neighbors of

pixel j and β is a smoothing coefficient. λ1, λ2 and β are

determined empirically.

Minimization of JFVC can be performed using the follow-

ing algorithm.

1. Choose suitable compactness parameters pk (discussed in

the following section).

2. Obtain initial estimate of vk.

3. Assume gj = 1,∀j ∈ Ω.

4. Compute membership functions,

ujk =(
(yj − gjvk)2pk + β

∑
l∈Nj

∑
m�=k u2

lm

)−1

∑C
k=1

(
(yj − gjvk)2pk + β

∑
l∈Nj

∑
m�=k u2

lm

)−1 .

5. Update the centroids,

vk =

∑
j∈Ω u2

jkgj(yj − gjvk)2pk−2yj∑
j∈Ω u2

jkg2
j (yj − gjvk)2pk−2

.

6. Update gain field coefficients by solving the spatially vary-

ing equation,

2yj

C∑
k=1

u2
jkpk(yj − gjvk)2pk−2vk =

2gj

C∑
k=1

u2
jkpk(yj − gjvk)2pk−2v2

k

+λ1(H1 � g)j + λ2(H2 � g)j .

7. If the algorithm converges, stop; otherwise go to step 4.

4. RESULTS

The compactness parameters are estimated based on a set of

SPGR training data [4], for which we have manually selected

landmarks on the cortical boundaries [11]. An exhaustive

search was performed to estimate p, such that the segmen-

tation isocontours generated by FVC were close to the land-

marks. The compactness parameters estimated on the train-

ing data are p S = [0.9, 1.00, 1.06]. Next we estimated the

compactness parameters for MP-RAGE using a training set

of SPGR and MP-RAGE data of the same subject. The pa-

rameters for MP-RAGE are estimated based on an exhaustive

search so that the isocontours of MP-RAGE segmentation line

up with the isocontours of SPGR using p S. The estimated

compactness for MP-RAGE was pM = [1.25, 1.0, 0.95].
Variances σ2

k, k = 1, 2, 3, from Eq. 2, were also estimated in

exactly the same way. The estimated variances were found to

be σS
2 = [3.1, 1.44, 1] for SPGR and σM

2 = [1, 1.52, 2.55]
for MP-RAGE. We used these values of p S, pM, σ S, σM on

the test images.

We conducted two experiments to verify that FVC can im-

prove the consistency of the segmentation of the same subject

under the two acquisition protocols. Our first experiment in-

volves two synthetic data sets which we used to simulate the

same object imaged with MP-RAGE and SPGR imaging pa-

rameters. We generated the phantoms from a fuzzy classifica-

tion truth model using the statistical model outlined in [12].

The phantoms possessed 5% noise and did not have any inho-

mogeneity. The misclassification rate, defined as the ratio of

the # of correctly classified voxels against the total # of non-

background voxels, is reported in Tab. 1 for classifying the

MP-RAGE and SPGR phantoms using GMM (with variable

priors and variances), FANTASM, FCM with Fuzzy Covari-

ance matrix (FCMV) and FVC. Our second experiment in-

volved a pair of real SPGR and MP-RAGE T1 images for five

subjects. We computed the hard segmentations using each of

the methods used in the first experiment and report the Jaccard

coefficient between the hard segmentations, averaged over all

three classes. We used smoothing and inhomogeneity correc-

tion while using GMM and FCMV. The results are in Tab. 2,

while Fig. 3 shows one of the data sets.

Table 1. Percent Misclassification rate for SPGR/MP-RAGE

with Ground Truth for two simulated phantoms. M is MP-

RAGE and S is SPGR. FCMV and FVC represent FCM with

Fuzzy Covariance matrix and FANTASM with Variable Com-

pactness. The two rows correspond to two different phan-

toms.

GMM FANTASM FCMV FVC
S M S M S M S M

5.64 12.78 3.62 5.66 4.45 5.11 3.55 3.51

7.51 9.54 6.32 8.43 5.32 6.11 4.72 4.86

Tab. 1 shows that FANTASM has nearly the same mis-

classification rate as FVC on SPGR images, but fails to do

as well on MP-RAGE images. From Fig. 3, we observe that

GMM tends to over-estimate gray matter in SPGR, while

FANTASM tends to over-estimate CSF in MP-RAGE. We

also observe that FANTASM produces visually good results

on SPGR data. It is also observed from Fig. 3 that FCMV

performs better than FANTASM on MP-RAGE, but fails to

do so on SPGR. Finally we can see that FVC performs better

on both SPGR and MP-RAGE.
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Table 2. Jaccard Coefficients, averaged over all three classes,

between SPGR and MP-RAGE hard segmentation of five sub-

jects. See Tab. 1 for abbreviations.

# GMM FANTASM FCMV FVC
1 0.7383 0.5611 0.7781 0.7952

2 0.7047 0.4764 0.7501 0.7538

3 0.8134 0.6670 0.8391 0.8559

4 0.7707 0.5209 0.6363 0.7921

5 0.7377 0.4205 0.4173 0.7588

5. DISCUSSION AND CONCLUSION

A new compactness parameter in the FCM framework is in-

troduced and we outlined an automatic fuzzy segmentation

method based on the parameter. We have satisfied our pri-

mary goal of obtaining more similar segmentations from the

same data acquired under differing protocols, SPGR and MP-

RAGE. The proposed approach is currently designed for sin-

gle channel data, it can be readily extended to a multichannel

algorithm. In the future, we would like to develop a robust

and fully automated framework for estimating the compact-

ness parameters, as opposed to our current practice of estima-

tion based on training.
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